

Brian L. Winer

Center for Cosmology and Astroparticle Physics
The Ohio State University

Representing the Fermi LAT Collaboration

Brookhaven Forum 2010

A Space-Time Odyssey

Hunting for Dark Matter with the Fermi Gamma-Ray Space Telescope

Where to place the observatory?

NASA Image

Fermi Observatory

Detection Strategy

- High Energy Gamma tend to pair produce
- LAT Energy Range: 20 MeV -- ~300 GeV
- GBM: 8 keV -- -- 40 MeV

Anticoincidence Detector (background) Conversion Foil Particle Tracking Detectors Calorimeter (energy measurement)

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

Pair Conversion Approach

- Veto Charge Particle Background
- Make gamma convert.
- Reconstruct directions of e+ e-
- Measure Energy e+ e-
- Reconstruct original direction and Energy of gamma.

Anti-Coincidence Detector

- ≻4% R.L.
- **≻89 scintillating tiles**
- >efficiency (>0.9997) for MIPs

Anti-Coincidence Detector

- ≻4% R.L.
- **≻89 scintillating tiles**
- >efficiency (>0.9997) for MIPs

Tracking detector

- ➤16 tungsten foils (12x3%R.L.,4x18%R.L.)
- **▶18 pairs of silicon strip arrays**
- >884736 strips (228 micron pitch)

Trigger

- **≻Overall HW Trigger Rate ~few KHz**
- **≻Software Filters Reduce Rate**
- **≻**Downlink: ~400-500 Hz
- ➤ Rate after Ground Cuts: ~few Hz

Calorimeter

- > 8.5 radiation lengths
- **≻8 layers cesium iodide logs**
- >1536 logs total (1200kg)

Launch of Fermi

- Very Successful Launch!
- Orbit:
 - * Altitude: 565 km
 - ★ Inclination: 25.6 deg
 - ★ Period: ~90 min
- Turn off through SAA
- Lifetime: 5 years min.
 - ⋆ No expendable

Operational Modes

Sky Survey Mode

- ★ Typical Mode of operation
- ★ View full sky every 2 orbits
- ★ "Rocking" Mode (up/down)
- Targets of Opportunity
 - *Autonomous Repoint (GRBs)
 - **★Slew to keep ToO in FOV**
 - **★Later years: ToO Proposals**

LAT: Wide Field of View ~2.4 sr

GBM: See almost all of the sky not occulted by the earth

Brian L Winer

Detector Performance

The Gamma Ray Sky

All Sky First Light Data:

Few Days of Data

10

The Gamma Ray Sky

All Sky View:

First Year of Data

Unidentified sources

Active Galactic Nuclei

Cosmic ray acceleration

Fermi Science

Pulsars

+11°42'
+11°36'

5°02°36° 5°02°09° 5°01″42° 5°01″15°
Courtesy of Fabrizio Fiore and the BeppoSAX Team

Quantum Gravity?

Dark matter

Gamma Ray Bursts

10 GeV

100 GeV

l TeV

The Dark Side...

- The universe seems to be composed of ~23% dark matter.
- Candidate: Weakly Interacting Massive Particle
- WIMP might decay or self-annihilate
- Could lead to gamma-rays.

Predicting the DM Signal

Spectral shape & flux magnitude

γ-ray flux factors

 $\int (\sum_i dN/dE B_i)dE$

X

 $4\pi \int \rho^2(\mathbf{r}) \mathbf{r}^2 d\mathbf{r} / \mathbf{M}^2_{\text{WIMP}}$

X

 $\langle \sigma v \rangle / 2$

X

 $1/4\pi d^{2}$

Energy spectrum

(depends upon particle mass, branching fractions)

X

number density²

(depends upon dark matter clustering)

X

annihilation crosssection

(depends upon underlying particle physics, inflation...)

X

distance⁻²

(depends upon dark matter clustering)

Spectral shape: Universal

Flux
magnitude:
Factors
difficult to
disentangle
for single
point source

WIMP Annihilation

Gamma ray yield per final state bb

M _{WIMP}	Total# γ	>100MeV	>1GeV	>10GeV
10 GeV	17.3	12.6	1.0	0
100GeV	24.5	22.5	12.4	1.0
1TeV	31.0	29.3	22.4	12.3

14

Brian L Winer

DM Distribution

- Expect concentration of DM at Galactic center.
- Significant variation in predicted behavior near the Galactic Center.
- "Traditional" Profiles (e.g. NFW) have a smooth distribution
- N-Body simulations indicate considerable clumpiness and can lead to significant boost factors.

Simulated Emission solely from DM Annihilations

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)

Brian L Winer

DM Distribution

- Expect concentration of DM at Galactic center.
- Significant variation in predicted behavior near the Galactic Center.
- "Traditional" Profiles (e.g. NFW) have a smooth distribution
- N-Body simulations indicate considerable clumpiness and can lead to significant boost factors.

Simulated Emission solely from DM Annihilations

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)

Targets in the DM Sky

The Full Gamma-Ray Sky

All Sky View:

First Year Data

Challenge: Need to account for all the gamma-rays from non-DM sources

Galactic Center

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - * Source confusion
 - Energetic Sources
 - Diffuse Emission along line of sight.

Galactic Center

- Fermi's year 1 catalog source closest to GC
 - * 1FGL J1745.6-2900
 - * I = 359.941; b=-0.051
 - ⋆ 95% Confinement radius 1.1'
- 25 Formal Associations based on position
 - (1 pulsar wind nebula, 1 supernova remnant, 2 TeV sources, 4 low-mass Xray binaries, etc.)
- Future analysis based on spectral and timing information may narrow possibilities.

La Rosa et al 90 cm radio map

Galactic Center - DM Search

- Analysis Approach: (arXiv 0912.3828)
 - ⋆ 7 x 7 region around GC
 - 11 months of data (front converting)
 - * E>400 MeV
- Background Models
 - Diffuse Emission: (GALPROP)
 - Isotropic
 - Point Sources: 1FGL

Additional Work is required before drawing any conclusions regarding DM.

- tore drawing any nclusions regarding DM.

 Effective Area Sys.

 Systematic Uncertainties with diffuse emission.

 Unresolved sources

 Instrumental effects

Work is continuing!

Search for DM "Clumps"

- Expect Clumps of DM in the Halo
- Characteristics:
 - No significant counterparts
 - Constant Emission
 - Spatially Extended (~1 deg)
 - DM Spectrum, not power-law
- Search for 5σ sources meeting the following criteria:
 - More than 10° from galactic plane
 - No appreciable counter part in other wavelengths
 - ⋆ Spatially Extended: (Average nearby clump ~1° radial extension)
 - Spectrum consistent with DM (either b-bbar or μ⁺μ⁻)
 - ★ Emission constant in time (~1 week interval)
 - Background sources+diffuse γ-ray emission

Search for DM "Clumps"

Search for

* More

- Expect Clumps of DM in the Halo
- Characteristics:
 - No significant counterparts
 - Constant Emission

Search approach optimized on first three months data.

- Search of 10 months of data: no candidates (Preliminary)
 - * Consistent with expectations for 100 GeV WIMP, Via Lactea II, and $\langle \sigma \rangle = 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$.
- Continuing to analyze additional data and evaluate sensitivity to other models.

21

- No arPaper in preparation
- * Spatia......
- Spectrum consistent with DM (either b-bbar or μ⁺μ⁻)
- ★ Emission constant in time (~1 week interval)
- Background sources+diffuse γ-ray emission

Dwarf Spheroidal (dSph) Galaxies

- dSphs are excellent DM targets of opportunity.
 - ★ N-Body DM Simulation predicts large clumps that support star formation.
 - ★ Very high Mass/Light Ratio (Dark Matter dominated)
 - ★ Low content of gas and dust (low astrophysical gamma-ray sources)
 - ★ Many close by (<100 kpc)
- Consider the 14 targets for Fermi (e.g. high gal. lat.)

Astrophys. J. **712**, 147 (2010)

arXiv preprint: 1001.4531

- 11 month data set
- 100 MeV < E < 50 GeV
- dSph will be point-like.
- Backgrounds
 - ★ Existing point-like sources
 - **★** Galactic Diffuse

Limits from dSph Galaxies

- No excess of events was detected for any of the dSph.
- Set 95% CL upper limits on flux from the sample.
- For 8 of the 14, the flux limits are combined with DM density inferred from stellar data(*) to constrain dark matter models.

^(*) stellar data from the Keck observatory (by Martinez, Bullock, Kaplinghat)

Limits from dSph Galaxies

Beginning to constrain some of the models!

Limits from dSph Galaxies

- Can also consider WIMP annihilation to leptonic final states.
- Constraints from non-detection of galaxy clusters can place strong limits on leptophilic DM models.

Accepted for publication JCAP arXiv preprint: 1002.2239

Cosmological DM Search

- Halos of other galaxies at all distances are shining in gamma-rays.
- Limits can be set based on Fermi's measurement of the the isotropic diffuse gamma-ray emission.
- Uncertainties associated with the evolution of DM structure

JCAP 1004:014,2010. arXiv preprint: 1002.4415

Cosmological DM Search

- Halos of other galaxies at all distances are shining in gamma-rays.
- Limits can be set based on Fermi's measurement of the the isotropic diffuse gamma-ray emission.
- Uncertainties associated with the evolution of DM structure

JCAP 1004:014,2010.

Brian L Winer

arXiv preprint: 1002.4415

26

Searching for Dark Matter Gamma Ray Lines

- "Smoking Gun" Signal
- Expected Branching fraction Small
 - Typically 10⁻¹ to 10⁻⁴
- Energy Resolution is key!
- Instrument resolution ~10% at 100 GeV
- Scan energy (30-200 GeV) looking for a bump.

Example fit for a 40 GeV line

Final State
$$\gamma\gamma \to E_{\gamma} = M_{DM}$$

Final State
$$\ \gamma Z
ightarrow E_{\gamma} = M_{DM} - rac{M_Z^2}{4 M_{DM}}$$

Searching for Dark Matter Gamma Ray Lines

- 11 month data sample
- Signal Model is line smeared by LAT response function.
- Background is power-law fit to side-bands
- Search Region:
 - |b|>10° and 20° x 20° around GC
- Remove sources (|b|>1°).

Example fit for a 40 GeV line

Energy (GeV)

Searching for Dark Matter Gamma Ray Lines

- Assuming DM density distribution, we can set limits on
 - Annihilation Cross Section
 - DM Lifetime for decay mode
- Limits still far from typical WIMP expectations.
- Some exotic models are disfavored
 - Models with non-thermally produced
 WIMPS can predict large <σ v>.
 - Some gravitino decay models have lifetime < 10²⁹ s.
- Limits still far from typical WIMP expectations.
- Even limits on Higgs in Space!

Energy (GeV)

Interesting Features of Cosmic Ray Electrons

Spectral Features:

- ★ ATIC excess around 600 GeV
- ★ H.E.S.S possible cutoff around 1 TeV
- Pamela shows excess in positron fraction
- Lots of new papers on the subject!
- Fermi LAT is an excellent electron/positron detector.

Resulting Fermi Electron Spectrum

- Excellent Statistics: ~4.5M evts
 - * >400 elec 0.772 1 TeV
- No Evidence of prominent spectral feature seen by ATIC.
 - ⋆ ATIC excess 300-800 GeV: 70 e
 - ⋆ Fermi would expect ~7000 e
- Fermi Data not compatible with prelaunch expectation from diffuse galactic emission.
 - Diffuse model can be modified.
 - **Doesn't account for positrons**

Measured spectrum well described by power-law within current values of **systematic** errors

$$J_{e^{\pm}} = (175.40 \pm 6.09) \left(\frac{E}{1 \text{ GeV}}\right)^{-(3.045 \pm 0.008)} \text{GeV}^{-1} \text{m}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

31

with χ^2 per degree of freedom of 9.7 / 23

Possible Explanations

Grey Lines: Possible contribution with varied parameters (injection index, cutoff energy, etc.) **Blue dot-dash**: Representative

choice of parameters.

Blue Solid: Diffuse Model + Pulsars

- Contributions from nearby, age appropriate, pulsars.
 - ★ From ATNF Catalog
- Provides a reasonable modification to the electron spectrum.
- Also, modifies the position fraction in a reasonable fashion.
- DM also can provide an explanation
- DM answer typically requires substantial boost factors and preferential final states.

Summary

- Fermi has been working very well.
- Multi-pronged Searches for Dark Matter WIMPs
- No detection yet.
- Constraints are begin to get interesting.
- Intense work is continuing
 - * Especially in improving our understanding astrophysical backgrounds
- We have analyzed ~1 year of data.
- Expect a 5-10 year mission.
 - * Hopefully most exciting results to come!

Backups

34

Electrons and Hadrons With Fermi

Electron candidate

- few ACD tile hits in conjunction with the track
- clean main track with extra-clusters very close to the track - note backsplash from the calorimeter
- well defined symmetric shower in the calorimeter, not fully contained

Hadron candidate

- ▶ large energy deposit per ACD tile
- small number of extra clusters around main track, large number of clusters away from the track
- large and asymmetric shower profile in the calorimeter
- LAT does not distinguish electrons from positrons
 - ★ For what follows: "electrons" means both
- All events with E > 20 GeV are sent to the ground.

On orbit rates in nominal configuration

◆ Overall trigger rate: ~few KHz
 ✓ Substantial variations due to orbital effects

- → Downlink rate: ~400—500 Hz
 - √ ~90% from GAMMA filter
 - √ ~20—30 Hz from DGN filter
 - √ ~5 Hz from HIP filter

- ◆ Rate of photons after the standard background rejection cuts for source study: ~1 Hz
 - ✓ Most of the downlinked events are in fact background, final 100:1 rejection is done in ground processing.